Tumblelog by Soup.io
Newer posts are loading.
You are at the newest post.
Click here to check if anything new just came in.

August 14 2017

Bank Robbery Tactic

This video purports to be a bank robbery in Kiev. He first threatens a teller, who basically ignores him because she's behind bullet-proof glass. But then the robber threatens one of her co-workers, who is on his side of the glass. Interesting example of a security system failing for an unexpected reason.

The video is weird, though. The robber seems very unsure of himself, and never really points the gun at anyone or even hold it properly.

August 11 2017

Friday Squid Blogging: Squid Eyeballs

Details on how a squid's eye corrects for underwater distortion:

Spherical lenses, like the squids', usually can't focus the incoming light to one point as it passes through the curved surface, which causes an unclear image. The only way to correct this is by bending each ray of light differently as it falls on each location of the lens's surface. S-crystallin, the main protein in squid lenses, evolved the ability to do this by behaving as patchy colloids­ -- small molecules that have spots of molecular glue that they use to stick together in clusters.

Research paper.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.

I Seem to Have a LinkedIn Account

I seem to have a LinkedIn account.

This comes as a surprise, since I don't have a LinkedIn account, and have never logged in to LinkedIn.

Does anyone have any contacts into the company? I would like to report this fraudulent account, and possibly get control of it. I'm not on LinkedIn, but the best defense against this is probably to create a real account.

Confusing Self-Driving Cars by Altering Road Signs

Researchers found that they could confuse the road sign detection algorithms of self-driving cars by adding stickers to the signs on the road. They could, for example, cause a car to think that a stop sign is a 45 mph speed limit sign. The changes are subtle, though -- look at the photo from the article.

Research paper:

"Robust Physical-World Attacks on Machine Learning Models," by Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song:

Abstract: Deep neural network-based classifiers are known to be vulnerable to adversarial examples that can fool them into misclassifying their input through the addition of small-magnitude perturbations. However, recent studies have demonstrated that such adversarial examples are not very effective in the physical world--they either completely fail to cause misclassification or only work in restricted cases where a relatively complex image is perturbed and printed on paper. In this paper we propose a new attack algorithm--Robust Physical Perturbations (RP2)-- that generates perturbations by taking images under different conditions into account. Our algorithm can create spatially-constrained perturbations that mimic vandalism or art to reduce the likelihood of detection by a casual observer. We show that adversarial examples generated by RP2 achieve high success rates under various conditions for real road sign recognition by using an evaluation methodology that captures physical world conditions. We physically realized and evaluated two attacks, one that causes a Stop sign to be misclassified as a Speed Limit sign in 100% of the testing conditions, and one that causes a Right Turn sign to be misclassified as either a Stop or Added Lane sign in 100% of the testing conditions.

August 10 2017

Turning an Amazon Echo into an Eavesdropping Device

For once, the real story isn't as bad as it seems. A researcher has figured out how to install malware onto an Echo that causes it to stream audio back to a remote controller, but:

The technique requires gaining physical access to the target Echo, and it works only on devices sold before 2017. But there's no software fix for older units, Barnes warns, and the attack can be performed without leaving any sign of hardware intrusion.

The way to implement this attack is by intercepting the Echo before it arrives at the target location. But if you can do that, there are a lot of other things you can do. So while this is a vulnerability that needs to be fixed -- and seems to have inadvertently been fixed -- it's not a cause for alarm.

August 09 2017

More on the Vulnerabilities Equities Process

Richard Ledgett -- a former Deputy Director of the NSA -- argues against the US government disclosing all vulnerabilities:

Proponents argue that this would allow patches to be developed, which in turn would help ensure that networks are secure. On its face, this argument might seem to make sense -- but it is a gross oversimplification of the problem, one that not only would not have the desired effect but that also would be dangerous.

Actually, he doesn't make that argument at all. He basically says that security is a lot more complicated than finding and disclosing vulnerabilities -- something I don't think anyone disagrees with. His conclusion:

Malicious software like WannaCry and Petya is a scourge in our digital lives, and we need to take concerted action to protect ourselves. That action must be grounded in an accurate understanding of how the vulnerability ecosystem works. Software vendors need to continue working to build better software and to provide patching support for software deployed in critical infrastructure. Customers need to budget and plan for upgrades as part of the going-in cost of IT, or for compensatory measures when upgrades are impossible. Those who discover vulnerabilities need to responsibly disclose them or, if they are retained for national security purposes, adequately safeguard them. And the partnership of intelligence, law enforcement and industry needs to work together to identify and disrupt actors who use these vulnerabilities for their criminal and destructive ends. No single set of actions will solve the problem; we must work together to protect ourselves. As for blame, we should place it where it really lies: on the criminals who intentionally and maliciously assembled this destructive ransomware and released it on the world.

I don't think anyone would argue with any of that, either. The question is whether the US government should prioritize attack over defense, and security over surveillance. Disclosing, especially in a world where the secrecy of zero-day vulnerabilities is so fragile, greatly improves the security of our critical systems.

August 08 2017

Uber Drivers Hacking the System to Cause Surge Pricing

Interesting story about Uber drivers who have figured out how to game the company's algorithms to cause surge pricing:

According to the study. drivers manipulate Uber's algorithm by logging out of the app at the same time, making it think that there is a shortage of cars.

[...]

The study said drivers have been coordinating forced surge pricing, after interviews with drivers in London and New York, and research on online forums such as Uberpeople.net. In a post on the website for drivers, seen by the researchers, one person said: "Guys, stay logged off until surge. Less supply high demand = surge."

.

Passengers, of course, have long had tricks to avoid surge pricing.

I expect to see more of this sort of thing as algorithms become more prominent in our lives.

August 07 2017

Hacking Slot Machines by Reverse-Engineering the Random Number Generators

Interesting story:

The venture is built on Alex's talent for reverse engineering the algorithms -- known as pseudorandom number generators, or PRNGs -- that govern how slot machine games behave. Armed with this knowledge, he can predict when certain games are likeliest to spit out money­insight that he shares with a legion of field agents who do the organization's grunt work.

These agents roam casinos from Poland to Macau to Peru in search of slots whose PRNGs have been deciphered by Alex. They use phones to record video of a vulnerable machine in action, then transmit the footage to an office in St. Petersburg. There, Alex and his assistants analyze the video to determine when the games' odds will briefly tilt against the house. They then send timing data to a custom app on an agent's phone; this data causes the phones to vibrate a split second before the agent should press the "Spin" button. By using these cues to beat slots in multiple casinos, a four-person team can earn more than $250,000 a week.

It's an interesting article; I have no idea how much of it is true.

The sad part is that the slot-machine vulnerability is so easy to fix. Although the article says that "writing such algorithms requires tremendous mathematical skill," it's really only true that designing the algorithms requires that skill. Using any of secure encryption algorithm or hash function as a PRNG is trivially easy. And there's no reason why the system can't be designed with a real RNG. There is some randomness in the system somewhere, and it can be added into the mix as well. The programmers can use a well-designed algorithm, like my own Fortuna, but even something less well-thought-out is likely to foil this attack.

August 04 2017

Friday Squid Blogging: Squid Fake News

I never imagined that there would be fake news about squid. (That website lets you write your own stories.)

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.

Penetrating a Casino's Network through an Internet-Connected Fish Tank

Attackers used a vulnerability in an Internet-connected fish tank to successfully penetrate a casino's network.

BoingBoing post.

August 03 2017

Splitting the NSA and US Cyber Command

Rumor is that the Trump administration will separate the NSA and US Cyber Command. I have long thought this was a good idea. Here's a good discussion of what it does and doesn't mean.

August 02 2017

Voting Machine Security

Last week, DefCon hosted a "Voter Hacker Village" event. Every single voting machine there was easily hackable.

Here are detailed details. There should be a summary report soon; I'll add it to this post when it's published.

Detecting Stingrays

Researchers are developing technologies that can detect IMSI-catchers: those fake cell phone towers that can be used to surveil people in the area.

This is good work, but it's unclear to me whether these devices can detect all the newer IMSI-catchers that are being sold to governments worldwide.

News article.

August 01 2017

NSA Collects MS Windows Error Information

Back in 2013, Der Spiegel reported that the NSA intercepts and collects Windows bug reports:

One example of the sheer creativity with which the TAO spies approach their work can be seen in a hacking method they use that exploits the error-proneness of Microsoft's Windows. Every user of the operating system is familiar with the annoying window that occasionally pops up on screen when an internal problem is detected, an automatic message that prompts the user to report the bug to the manufacturer and to restart the program. These crash reports offer TAO specialists a welcome opportunity to spy on computers.

When TAO selects a computer somewhere in the world as a target and enters its unique identifiers (an IP address, for example) into the corresponding database, intelligence agents are then automatically notified any time the operating system of that computer crashes and its user receives the prompt to report the problem to Microsoft. An internal presentation suggests it is NSA's powerful XKeyscore spying tool that is used to fish these crash reports out of the massive sea of Internet traffic.

The automated crash reports are a "neat way" to gain "passive access" to a machine, the presentation continues. Passive access means that, initially, only data the computer sends out into the Internet is captured and saved, but the computer itself is not yet manipulated. Still, even this passive access to error messages provides valuable insights into problems with a targeted person's computer and, thus, information on security holes that might be exploitable for planting malware or spyware on the unwitting victim's computer.

Although the method appears to have little importance in practical terms, the NSA's agents still seem to enjoy it because it allows them to have a bit of a laugh at the expense of the Seattle-based software giant. In one internal graphic, they replaced the text of Microsoft's original error message with one of their own reading, "This information may be intercepted by a foreign sigint system to gather detailed information and better exploit your machine." ("Sigint" stands for "signals intelligence.")

The article talks about the (limited) value of this information with regard to specific target computers, but I have another question: how valuable would this database be for finding new zero-day Windows vulnerabilities to exploit? Microsoft won't have the incentive to examine and fix problems until they happen broadly among its user base. The NSA has a completely different incentive structure.

I don't remember this being discussed back in 2013.

EDITED TO ADD (8/6): Slashdot thread.

Vulnerabilities in Car Washes

Articles about serious vulnerabilities in IoT devices and embedded systems are now dime-a-dozen. This one concerns Internet-connected car washes:

A group of security researchers have found vulnerabilities in internet-connected drive-through car washes that would let hackers remotely hijack the systems to physically attack vehicles and their occupants. The vulnerabilities would let an attacker open and close the bay doors on a car wash to trap vehicles inside the chamber, or strike them with the doors, damaging them and possibly injuring occupants.

July 31 2017

Robot Safecracking

Robots can crack safes faster than humans -- and differently:

So Seidle started looking for shortcuts. First he found that, like many safes, his SentrySafe had some tolerance for error. If the combination includes a 12, for instance, 11 or 13 would work, too. That simple convenience measure meant his bot could try every third number instead of every single number, immediately paring down the total test time to just over four days. Seidle also realized that the bot didn't actually need to return the dial to its original position before trying every combination. By making attempts in a certain careful order, it could keep two of the three rotors in place, while trying new numbers on just the last, vastly cutting the time to try new combinations to a maximum of four seconds per try. That reduced the maximum bruteforcing time to about one day and 16 hours, or under a day on average.

But Seidle found one more clever trick, this time taking advantage of a design quirk in the safe intended to prevent traditional safecracking. Because the safe has a rod that slips into slots in the three rotors when they're aligned to the combination's numbers, a human safecracker can apply light pressure to the safe's handle, turn its dial, and listen or feel for the moment when that rod slips into those slots. To block that technique, the third rotor of Seidle's SentrySafe is indented with twelve notches that catch the rod if someone turns the dial while pulling the handle.

Seidle took apart the safe he and his wife had owned for years, and measured those twelve notches. To his surprise, he discovered the one that contained the slot for the correct combination was about a hundredth of an inch narrower than the other eleven. That's not a difference any human can feel or listen for, but his robot can easily detect it with a few automated measurements that take seconds. That discovery defeated an entire rotor's worth of combinations, dividing the possible solutions by a factor of 33, and reducing the total cracking time to the robot's current hour-and-13 minute max.

We're going to have to start thinking about robot adversaries as we design our security systems.

Measuring Vulnerability Rediscovery

New paper: "Taking Stock: Estimating Vulnerability Rediscovery," by Trey Herr, Bruce Schneier, and Christopher Morris:

Abstract: How often do multiple, independent, parties discover the same vulnerability? There are ample models of vulnerability discovery, but little academic work on this issue of rediscovery. The immature state of this research and subsequent debate is a problem for the policy community, where the government's decision to disclose a given vulnerability hinges in part on that vulnerability's likelihood of being discovered and used maliciously by another party. Research into the behavior of malicious software markets and the efficacy of bug bounty programs would similarly benefit from an accurate baseline estimate for how often vulnerabilities are discovered by multiple independent parties.

This paper presents a new dataset of more than 4,300 vulnerabilities, and estimates vulnerability rediscovery across different vendors and software types. It concludes that rediscovery happens more than twice as often as the 1-9% range previously reported. For our dataset, 15% to 20% of vulnerabilities are discovered independently at least twice within a year. For just Android, 13.9% of vulnerabilities are rediscovered within 60 days, rising to 20% within 90 days, and above 21% within 120 days. For the Chrome browser we found 12.57% rediscovery within 60 days; and the aggregate rate for our entire dataset generally rises over the eight-year span, topping out at 19.6% in 2016. We believe that the actual rate is even higher for certain types of software.

When combined with an estimate of the total count of vulnerabilities in use by the NSA, these rates suggest that rediscovery of vulnerabilities kept secret by the U.S. government may be the source of up to one-third of all zero-day vulnerabilities detected in use each year. These results indicate that the information security community needs to map the impact of rediscovery on the efficacy of bug bounty programs and policymakers should more rigorously evaluate the costs of non-disclosure of software vulnerabilities.

We wrote a blog post on the paper, and another when we issued a revised version.

Comments on the original paper by Dave Aitel. News articles.

July 28 2017

Friday Squid Blogging: Giant Squids Have Small Brains

New research:

In this study, the optic lobe of a giant squid (Architeuthis dux, male, mantle length 89 cm), which was caught by local fishermen off the northeastern coast of Taiwan, was scanned using high-resolution magnetic resonance imaging in order to examine its internal structure. It was evident that the volume ratio of the optic lobe to the eye in the giant squid is much smaller than that in the oval squid (Sepioteuthis lessoniana) and the cuttlefish (Sepia pharaonis). Furthermore, the cell density in the cortex of the optic lobe is significantly higher in the giant squid than in oval squids and cuttlefish, with the relative thickness of the cortex being much larger in Architeuthis optic lobe than in cuttlefish. This indicates that the relative size of the medulla of the optic lobe in the giant squid is disproportionally smaller compared with these two cephalopod species.

From the New York Times:

A recent, lucky opportunity to study part of a giant squid brain up close in Taiwan suggests that, compared with cephalopods that live in shallow waters, giant squids have a small optic lobe relative to their eye size.

Furthermore, the region in their optic lobes that integrates visual information with motor tasks is reduced, implying that giant squids don't rely on visually guided behavior like camouflage and body patterning to communicate with one another, as other cephalopods do.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.

July 14 2017

Friday Squid Blogging: Eyeball Collector Wants a Giant-Squid Eyeball

They're rare:

The one Dubielzig really wants is an eye from a giant squid, which has the biggest eye of any living animal -- it's the size of a dinner plate.

"But there are no intact specimens of giant squid eyes, only rotten specimens that have been beached," he says.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.

Book Review: Twitter and Tear Gas, by Zeynep Tufekci

There are two opposing models of how the Internet has changed protest movements. The first is that the Internet has made protesters mightier than ever. This comes from the successful revolutions in Tunisia (2010-11), Egypt (2011), and Ukraine (2013). The second is that it has made them more ineffectual. Derided as "slacktivism" or "clicktivism," the ease of action without commitment can result in movements like Occupy petering out in the US without any obvious effects. Of course, the reality is more nuanced, and Zeynep Tufekci teases that out in her new book Twitter and Tear Gas.

Tufekci is a rare interdisciplinary figure. As a sociologist, programmer, and ethnographer, she studies how technology shapes society and drives social change. She has a dual appointment in both the School of Information Science and the Department of Sociology at University of North Carolina at Chapel Hill, and is a Faculty Associate at the Berkman Klein Center for Internet and Society at Harvard University. Her regular New York Times column on the social impacts of technology is a must-read.

Modern Internet-fueled protest movements are the subjects of Twitter and Tear Gas. As an observer, writer, and participant, Tufekci examines how modern protest movements have been changed by the Internet­ -- and what that means for protests going forward. Her book combines her own ethnographic research and her usual deft analysis, with the research of others and some big data analysis from social media outlets. The result is a book that is both insightful and entertaining, and whose lessons are much broader than the book's central topic.

"The Power and Fragility of Networked Protest" is the book's subtitle. The power of the Internet as a tool for protest is obvious: it gives people newfound abilities to quickly organize and scale. But, according to Tufekci, it's a mistake to judge modern protests using the same criteria we used to judge pre-Internet protests. The 1963 March on Washington might have culminated in hundreds of thousands of people listening to Martin Luther King Jr. deliver his "I Have a Dream" speech, but it was the culmination of a multi-year protest effort and the result of six months of careful planning made possible by that sustained effort. The 2011 protests in Cairo came together in mere days because they could be loosely coordinated on Facebook and Twitter.

That's the power. Tufekci describes the fragility by analogy. Nepalese Sherpas assist Mt. Everest climbers by carrying supplies, laying out ropes and ladders, and so on. This means that people with limited training and experience can make the ascent, which is no less dangerous -- to sometimes disastrous results. Says Tufekci: "The Internet similarly allows networked movements to grow dramatically and rapidly, but without prior building of formal or informal organizational and other collective capacities that could prepare them for the inevitable challenges they will face and give them the ability to respond to what comes next." That makes them less able to respond to government counters, change their tactics­ -- a phenomenon Tufekci calls "tactical freeze" -- make movement-wide decisions, and survive over the long haul.

Tufekci isn't arguing that modern protests are necessarily less effective, but that they're different. Effective movements need to understand these differences, and leverage these new advantages while minimizing the disadvantages.

To that end, she develops a taxonomy for talking about social movements. Protests are an example of a "signal" that corresponds to one of several underlying "capacities." There's narrative capacity: the ability to change the conversation, as Black Lives Matter did with police violence and Occupy did with wealth inequality. There's disruptive capacity: the ability to stop business as usual. An early Internet example is the 1999 WTO protests in Seattle. And finally, there's electoral or institutional capacity: the ability to vote, lobby, fund raise, and so on. Because of various "affordances" of modern Internet technologies, particularly social media, the same signal -- a protest of a given size -- reflects different underlying capacities.

This taxonomy also informs government reactions to protest movements. Smart responses target attention as a resource. The Chinese government responded to 2015 protesters in Hong Kong by not engaging with them at all, denying them camera-phone videos that would go viral and attract the world's attention. Instead, they pulled their police back and waited for the movement to die from lack of attention.

If this all sounds dry and academic, it's not. Twitter and Tear Gasis infused with a richness of detail stemming from her personal participation in the 2013 Gezi Park protests in Turkey, as well as personal on-the-ground interviews with protesters throughout the Middle East -- particularly Egypt and her native Turkey -- Zapatistas in Mexico, WTO protesters in Seattle, Occupy participants worldwide, and others. Tufekci writes with a warmth and respect for the humans that are part of these powerful social movements, gently intertwining her own story with the stories of others, big data, and theory. She is adept at writing for a general audience, and­despite being published by the intimidating Yale University Press -- her book is more mass-market than academic. What rigor is there is presented in a way that carries readers along rather than distracting.

The synthesist in me wishes Tufekci would take some additional steps, taking the trends she describes outside of the narrow world of political protest and applying them more broadly to social change. Her taxonomy is an important contribution to the more-general discussion of how the Internet affects society. Furthermore, Her insights on the networked public sphere has applications for understanding technology-driven social change in general. These are hard conversations for society to have. We largely prefer to allow technology to blindly steer society or -- in some ways worse -- leave it to unfettered for-profit corporations. When you're reading Twitter and Tear Gas, keep current and near-term future technological issues such as ubiquitous surveillance, algorithmic discrimination, and automation and employment in mind. You'll come away with new insights.

Tufekci twice quotes historian Melvin Kranzberg from 1985: "Technology is neither good nor bad; nor is it neutral." This foreshadows her central message. For better or worse, the technologies that power the networked public sphere have changed the nature of political protest as well as government reactions to and suppressions of such protest.

I have long characterized our technological future as a battle between the quick and the strong. The quick -- dissidents, hackers, criminals, marginalized groups -- are the first to make use of a new technology to magnify their power. The strong are slower, but have more raw power to magnify. So while protesters are the first to use Facebook to organize, the governments eventually figure out how to use Facebook to track protesters. It's still an open question who will gain the upper hand in the long term, but Tufekci's book helps us understand the dynamics at work.

This essay originally appeared on Vice Motherboard.

The book on Amazon.com.

Older posts are this way If this message doesn't go away, click anywhere on the page to continue loading posts.
Could not load more posts
Maybe Soup is currently being updated? I'll try again automatically in a few seconds...
Just a second, loading more posts...
You've reached the end.

Don't be the product, buy the product!

Schweinderl